# NOT RUN {
d = metafor::escalc(measure="RR", ai=tpos, bi=tneg,
ci=cpos, di=cneg, data=metafor::dat.bcg)
m = metafor::rma.uni(yi= d$yi, vi=d$vi, knha=FALSE,
measure="RR", method="DL" )
yr = as.numeric(m$b) # metafor returns on log scale
vyr = as.numeric(m$vb)
t2 = m$tau2
vt2 = m$se.tau2^2
# obtaining all three estimators and inference
confounded_meta( .q=log(0.90), .r=0.20, .muB=log(1.5), .sigB=0.1,
.yr=yr, .vyr=vyr, .t2=t2, .vt2=vt2,
CI.level=0.95 )
# passing only arguments needed for prop point estimate
confounded_meta( .q=log(0.90), .muB=log(1.5),
.yr=yr, .t2=t2, CI.level=0.95 )
# passing only arguments needed for Tmin, Gmin point estimates
confounded_meta( .q=log(0.90), .r=0.20,
.yr=yr, .t2=t2, CI.level=0.95 )
# }
Run the code above in your browser using DataLab