Learn R Programming

ConnectednessApproach (version 1.0.4)

DCCGARCHselection: DCC-GARCH selection specification

Description

This function calculates the optimal DCC-GARCH specification

Usage

DCCGARCHselection(
  x,
  distributions = c("norm", "snorm", "std", "sstd", "ged", "sged"),
  models = c("sGARCH", "eGARCH", "gjrGARCH", "iGARCH", "TGARCH", "AVGARCH", "NGARCH",
    "NAGARCH", "APARCH", "ALLGARCH"),
  prob = 0.05,
  conf.level = 0.9,
  lag = 20,
  ar = 0,
  ma = 0
)

Value

Get best DCC-GARCH

Arguments

x

zoo data matrix

distributions

Vector of distributions

models

Vector of GARCH models

prob

The quantile (coverage) used for the VaR.

conf.level

Confidence level of VaR test statistics

lag

Lag length of weighted Portmanteau statistics

ar

AR(p)

ma

MA(q)

Author

David Gabauer

References

Ghalanos, A. (2014). rugarch: Univariate GARCH models, R package version 1.3-3.

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2021). The impact of Euro through time: Exchange rate dynamics under different regimes. International Journal of Finance & Economics, 26(1), 1375-1408.