Learn R Programming

ConnectednessApproach (version 1.0.4)

TimeConnectedness: Diebold and Yilmaz (2009, 2012) connectedness approach

Description

This function allows to calculate the Diebold and Yilmaz (2009, 2012) connectedness measures.

Usage

TimeConnectedness(
  Phi = NULL,
  Sigma = NULL,
  nfore = 10,
  generalized = TRUE,
  corrected = FALSE,
  FEVD = NULL
)

Value

Get connectedness measures

Arguments

Phi

VAR coefficient matrix

Sigma

Residual variance-covariance matrix

nfore

H-step ahead forecast horizon

generalized

Orthorgonalized/generalized FEVD

corrected

Boolean value whether corrected or standard TCI should be computed

FEVD

Alternatively, to provide Phi and Sigma it is also possible to use FEVD directly.

Author

David Gabauer

References

Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158-171.

Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66.

Examples

Run this code
# \donttest{
#Replication of DY2012
data("dy2012")
fit = VAR(dy2012, configuration=list(nlag=4))
dca = TimeConnectedness(Phi=fit$B, Sigma=fit$Q, nfore=10, generalized=TRUE)
dca$TABLE
# }

Run the code above in your browser using DataLab