Joe.Markov.DATA: Generating Time Series Data Under a Copula-Based Markov Chain Model with the Joe Copula
Description
Time-series data are generated under a copula-based Markov chain model with the Joe copula.
Usage
Joe.Markov.DATA(n, mu, sigma, alpha)
Arguments
n
sample size
mu
mean
sigma
standard deviation
alpha
association parameter
Value
Time series data of size n
Details
alpha>=1 for positive association
References
Emura T, Long TH, Sun LH (2017), R routines for performing estimation and
statistical process control under copula-based time series models,
Communications in Statistics - Simulation and Computation, 46 (4): 3067-87
Long TS and Emura T (2014), A control chart using copula-based Markov chain models,
Journal of the Chinese Statistical Association 52 (No.4): 466-96
# NOT RUN {n=1000alpha=2.856### Kendall's tau =0.5 ###mu=2sigma=1Y=Joe.Markov.DATA(n,mu,sigma,alpha)
mean(Y)
sd(Y)
cor(Y[-1],Y[-n],method="kendall")
Joe.Markov.MLE(Y,k=2)
# }