Joe.Markov.MLE: Maximum Likelihood Estimation and Statistical Process Control Under the Joe Copula
Description
The maximum likelihood estimates are produced and the Shewhart control chart is drawn with k-sigma control limits (e.g., 3-sigma). The dependence model follows the Joe copula and the marginal (stationary) distribution follows the normal distribution.
Usage
Joe.Markov.MLE(Y, k = 3, D = 1, plot = TRUE,GOF=FALSE,method = "nlm")
Arguments
Y
vector of datasets
k
constant determining the length between LCL and UCL (k=3 corresponds to 3-sigma limit)
D
diameter for U(-D, D) used in randomized Newton-Raphson
plot
show the control chart if TRUE
GOF
show the model diagnostic plot if TRUE
method
apply "nlm" or "Newton" method
Value
mu
estimate, SE, and 95 percent CI
sigma
estimate, SE, and 95 percent CI
alpha
estimate, SE, and 95 percent CI
Control_Limit
Center = mu, LCL = mu - k*sigma, UCL = mu + k*sigma
out_of_control
IDs for out-of-control points
Gradient
gradients (must be zero)
Hessian
Hessian matrix
Eigenvalue_Hessian
Eigenvalues for the Hessian matrix
KS.test
KS statistics
CM.test
CM statistics
log.likelihood
Log-likelihood value for the estimation
References
Emura T, Long TH, Sun LH (2017), R routines for performing estimation and
statistical process control under copula-based time series models,
Communications in Statistics - Simulation and Computation, 46 (4): 3067-87
Long TH and Emura T (2014), A control chart using copula-based Markov chain models, Journal of the Chinese Statistical Association 52 (No.4): 466-96
# NOT RUN {n=1000alpha=2.856### Kendall's tau =0.5 ###mu=2sigma=1Y=Joe.Markov.DATA(n,mu,sigma,alpha)
mean(Y)
sd(Y)
cor(Y[-1],Y[-n],method="kendall")
Joe.Markov.MLE(Y,k=2)
# }