powered by
This function computes the estimation of a latent variables foe=r each cluster using the conditional a posteriori median.
MAP.discrete(vv, uu, family, rot, thC0k, dfC = NULL, nq = 35)
Conditional a posteriori median.
vector of values in (0,1)
copula family "gaussian" , "t" , "clayton" , "joe", "frank" , "fgm", gumbel", "plackett", "galambos", "huesler-reiss"
rotation: 0 (default), 90, 180 (survival), or 270.
vector of copula parameters
degrees of freedom for the Student copula (default is NULL)
number of nodes and weighted for Gaussian quadrature of the product of conditional copulas; default is 31.
Pavel Krupskii, Bouchra R. Nasri and Bruno N. Remillard
Krupskii, Nasri & Remillard (2023). On factor copula-based mixed regression models
uu = c(0.5228155, 0.3064417, 0.2789849, 0.5176489, 0.3587144) vv = c(0.7816627, 0.6688788, 0.6351364, 0.7774917, 0.7264787) thC0k=rep(17.54873,5) MAP.discrete(vv,uu,"clayton",rot=90,thC0k,nq=35)
Run the code above in your browser using DataLab