powered by
Computes the MLE estimation for a bivariate copula using gradient. The likelihood is likelihood is c(u,v;theta)
mlecop(u, v, fcopders, start = 2, LB = 1.01, UB = 7)
List of outputs from nlm function
vector of values in (0,1)
ffrkders, fgumders or fmtcjders
starting value for the parameter (default =2)
lower bound for the parameter (default is 1.01)
upper bound for the parameter (default is 7)
Pavel Krupskii
set.seed(2) v = runif(250) w = runif(250) u = 1/sqrt(1+(w^(-2/3)-1)/v^2) # Clayton copula with parameter 2 (tau=0.5) out = mlecop(u,v,fmtcjders)
Run the code above in your browser using DataLab