The estimated parameters can be obtained by using a quasi-Newton method applied to the logarithm of the joint likelihood. This numerical method requires only the objective function, i.e., the logarithm of the joint likelihood, while the gradients are computed numerically and the Hessian matrix of the second order derivatives is updated in each iteration. The standard errors (SE) of the ML estimates can be also obtained via the gradients and the Hessian computed numerically during the maximization process.
multinomVineCopulaREMADA.norm(TP,FN,FP,TN,NEP,NEN,
gl,mgrid,qcond1,pcond1,tau2par1,
qcond2,pcond2,tau2par2)
multinomVineCopulaREMADA.beta(TP,FN,FP,TN,NEP,NEN,
gl,mgrid,qcond1,pcond1,tau2par1,
qcond2,pcond2,tau2par2)
tmultinomVineCopulaREMADA.norm(TP,FN,FP,TN,NEP,NEN,
gl,mgrid,
qcond1,pcond1,tau2par1,
qcond2,pcond2,tau2par2)
tmultinomVineCopulaREMADA.beta(TP,FN,FP,TN,NEP,NEN,
gl,mgrid,
qcond1,pcond1,tau2par1,
qcond2,pcond2,tau2par2)
A list containing the following components:
the value of the estimated minimum of the negative log-likelihood
the MLE
the gradient at the estimated minimum of of the negative log-likelihood
the hessian at the estimated minimum of the negative log-likelihood
an integer indicating why the optimization process terminated
the number of iterations performed
For more details see nlm
the number of true positives
the number of false negatives
the number of false positives
the number of true negatives
the number of non-evaluable positives in the presence of non-evaluable subjects
the number of non-evaluable negatives in the presence of non-evaluable subjects
a list containing the components of Gauss-Legendre nodes gl$nodes
and weights gl$weights
a list containing 4-dimensional arrays.
function for the inverse conditional copula cdf at the (1,2) and (3,4) bivariate margin
function for the conditional copula cdf at the (1,2) and (3,4) bivariate margin
function for maping Kendall's tau at the (1,2) and (3,4) bivariate margin to copula parameter
function for the inverse conditional copula cdf at the (2,3) bivariate margin
function for the conditional copula cdf at the (2,3) bivariate margin
function for maping Kendall's tau at the (2,3) bivariate margin to copula parameter
Nikoloulopoulos, A.K. (2020) A multinomial quadrivariate D-vine copula mixed model for diagnostic studies meta-analysis in the presence of non-evaluable subjects. Statistical Methods in Medical Research, 29 (10), 2988--3005. tools:::Rd_expr_doi("10.1177/0962280220913898").
rmultinomVineCopulaREMADA
# \donttest{
nq=15
gl=gauss.quad.prob(nq,"uniform")
data(mgrid15)
data(MK2016)
attach(MK2016)
out=tmultinomVineCopulaREMADA.beta(TP,FN,FP,TN,NEP,NEN,
gl,mgrid15,qcondcln180,pcondcln180,tau2par.cln180,
qcondcln90,pcondcln90,tau2par.cln90)
detach(MK2016)
# }
Run the code above in your browser using DataLab