#dataset generation
base=mixture_generator(n=15,p=10,ratio=0.4,tp1=1,tp2=1,tp3=1,positive=0.5,
R2Y=0.8,R2=0.9,scale=TRUE,max_compl=3,lambda=1)
X_appr=base$X_appr
Y_appr=base$Y_appr
Y_test=base$Y_test
X_test=base$X_test
TrueZ=base$Z#True generative structure (binary matrix)
#density estimation for the MCMC
density=density_estimation(X=X_appr,nbclustmax=10,detailed=TRUE)
Bic_null_vect=density$BIC_vect
#MCMC to find the structure
res=structureFinder(X=X_appr,verbose=0,reject=0,Maxiter=900,
nbini=30,candidates=-1,Bic_null_vect=Bic_null_vect,star=TRUE,p1max=15,clean=TRUE)
hatZ=res$Z_opt
hatBic=res$bic_opt
#BIC comparison between true and found structure
bicopt_vect=BicZ(X=X_appr,Z=hatZ,Bic_null_vect=Bic_null_vect)
bicopt_vrai=BicZ(X=X_appr,Z=TrueZ,Bic_null_vect=Bic_null_vect)
sum(bicopt_vect);sum(bicopt_vrai)
#interpretation of found and true structure ordered by increasing R2
readZ(Z=hatZ,crit="R2",X=X_appr,output="all",order=1)# <NA>line : name of subregressed covariate
readZ(Z=TrueZ,crit="R2",X=X_appr,output="all",order=1)# <NA>line : name of subregressed covariate
#Structure comparison
compZ=compare_struct(trueZ=TrueZ,Zalgo=hatZ)#qualitative comparison
#Regression coefficients estimation
select="NULL"
resY=correg(X=X_appr,Y=Y_appr,Z=hatZ,compl=TRUE,expl=TRUE,pred=TRUE,
select=select,K=10,returning=TRUE)
MSE_complete=MSE_loc(Y=Y_test,X=X_test,intercept=TRUE,A=resY$compl$A)
MSE_explicative=MSE_loc(Y=Y_test,X=X_test,intercept=TRUE,A=resY$expl$A)
MSE_predictive=MSE_loc(Y=Y_test,X=X_test,intercept=TRUE,A=resY$pred$A)
MSE_vrai=MSE_loc(Y=Y_test,X=X_test,intercept=TRUE,A=base$A)
MSE=data.frame(MSE_complete,MSE_explicative,MSE_predictive,MSE_vrai)
MSE#estimated structure
compZ$true_left;compZ$false_left
barplot(as.matrix(MSE),main="MSE on validation dataset", sub=paste("select=",select))
abline(h=MSE_complete,col="red")
Run the code above in your browser using DataLab