Learn R Programming

CorReg (version 1.1.1)

density_estimation: BIC of estimated marginal gaussian mixture densities

Description

Estimates the density of each covariates with gaussian mixture models and then gives the associated BIC.

Usage

density_estimation(X = X, nbclustmax = 10, nbclustmin = 1, verbose = FALSE, detailed = FALSE, max = TRUE, package = c("mclust", "Rmixmod"), nbini = 20, matshape = FALSE, ...)

Arguments

X
the dataset (matrix)
nbclustmax
max number of clusters in the gaussian mixtures
nbclustmin
min number of clusters in the gaussian mixtures
verbose
verbose or not
detailed
boolean to give the details of the mixtures found
max
boolean. Use an heuristic to shrink nbclustmax according to the number of individuals in the dataset
package
package to use (Rmixmod,mclust)
nbini
number of initial points for Rmixmod
matshape
boolean to give the detail in matricial shape
...
additional parameters

Value

a list that contains:
BIC_vect
vector of the BIC (one per variable)
BIC
global value of the BIC (=sum(BIC_vect))
nbclust
vector of the numbers of components
details
list of matrices that describe each Gaussian Mixture (proportions, means and variances)

Examples

Run this code
## Not run: 
#   rm(list=ls())#clean the workspace
#   
# require(CorReg)
#    #dataset generation
#    base=mixture_generator(n=150,p=10,valid=0,ratio=0.4,tp1=1,tp2=1,tp3=1,positive=0.5,
#                           R2Y=0.8,R2=0.9,scale=TRUE,max_compl=3,lambda=1)
#    X_appr=base$X_appr #learning sample
#  density=density_estimation(X = X_appr, detailed = TRUE)#estimation of the marginal densities
# density$BIC_vect #vector of the BIC (one per variable)
# density$BIC #global value of the BIC (sum of the BICs)
# density$nbclust #vector of the numbers of components.
# density$details #matrices that describe each Gaussian Mixture (proportions, means and variances)
# 
#    ## End(Not run)

Run the code above in your browser using DataLab