all.counts=c(rep(0,5),352,479,530,291,101,17)
nmax1 <- length(all.counts)
nmax <- nmax1 - 1
cnum <- 0:nmax
ncount <- sum(all.counts)
all.mean <- sum(cnum*all.counts)/ncount
all.scalef <- ((sum(cnum*cnum*all.counts) - ncount*all.mean*all.mean)
/ (ncount - 1)) / all.mean
alldata <- data.frame(all.mean, all.scalef)
mf <- model.frame(formula = all.mean~1, data = alldata)
covariates.matrix.mean <- model.matrix(attr(mf, "terms"), data = mf)
mf <- model.frame(formula=all.scalef~1, data=alldata)
covariates.matrix.scalef <- model.matrix(attr(mf, "terms"), data=mf)
list.data <- list(all.counts)
parameter <- c(1.8388023, 0.6009881)
names(parameter) <- c("beta0 log(mean)", "beta0 log(scale-factor)")
offset.mean <- matrix(c(rep(0,nrow(covariates.matrix.mean))), ncol=1)
offset.scalef <- matrix(c(rep(0,nrow(covariates.matrix.scalef))), ncol=1)
link <- "log"
attr(link, which="mean") <- make.link(link)
output <- LL.Regression.Counts(parameter,
model.type = "mean and scale-factor", model.name = "limiting",
link, list.data, covariates.matrix.mean,
covariates.matrix.scalef, offset.mean, offset.scalef, ltvalue=4,
utvalue=11, fixed.b=NA, weights = NULL, grad.method = "simple")
print(output)
Run the code above in your browser using DataLab