# NOT RUN {
## generate 100 sample covariances of size (5-by-5).
pdim = 5
samples = samplecovs(100,pdim)
## compute mean of first 50 sample covariances from data under Normal(0,Identity).
mLERM = CovMean(samples[,,1:50], method="LERM")
mAIRM = CovMean(samples[,,1:50], method="AIRM")
mChol = CovMean(samples[,,1:50], method="Cholesky")
mRoot = CovMean(samples[,,1:50], method="RootEuclidean")
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(mLERM[,pdim:1], main="LERM mean")
image(mAIRM[,pdim:1], main="AIRM mean")
image(mChol[,pdim:1], main="Cholesky mean")
image(mRoot[,pdim:1], main="RootEuclidean mean")
par(opar)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab