
PreEst.2014Banerjee
returns a Bayes estimator of the banded precision matrix using G-Wishart prior.
Stein<U+2019>s loss or squared error loss function is used depending on the <U+201C>loss<U+201D> argument in the function.
The bandwidth is set at the mode of marginal posterior for the bandwidth parameter.
PreEst.2014Banerjee(
X,
upperK = floor(ncol(X)/2),
delta = 10,
logpi = function(k) { -k^4 },
loss = c("Stein", "Squared")
)
an
upper bound of bandwidth
hyperparameter for G-Wishart prior. Default value is 10. It has to be larger than 2.
log of prior distribution for bandwidth
type of loss; either "Stein"
or "Squared"
.
a named list containing:
a
banerjee_posterior_2014CovTools
# NOT RUN {
## generate data from multivariate normal with Identity precision.
pdim = 10
data = matrix(rnorm(50*pdim), ncol=pdim)
## compare different K
out1 <- PreEst.2014Banerjee(data, upperK=1)
out2 <- PreEst.2014Banerjee(data, upperK=3)
out3 <- PreEst.2014Banerjee(data, upperK=5)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(diag(pdim)[,pdim:1],main="Original Precision")
image(out1$C[,pdim:1], main="banded1::upperK=1")
image(out2$C[,pdim:1], main="banded1::upperK=3")
image(out3$C[,pdim:1], main="banded1::upperK=5")
par(opar)
# }
Run the code above in your browser using DataLab