## Not run:
# # Generate some survival data with 10 informative covariates
# n <- 200; p <- 100
# beta <- c(rep(1,10),rep(0,p-10))
# x <- matrix(rnorm(n*p),n,p)
# real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
# cens.time <- rexp(n,rate=1/10)
# status <- ifelse(real.time <= cens.time,1,0)
# obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)
#
# # Fit a Cox proportional hazards model by CoxBoost
#
# cbfit <- CoxBoost(time=obs.time,status=status,x=x,stepno=100,
# penalty=100)
#
# # estimate p-values
#
# p1 <- estimPVal(cbfit,x,permute.n=10)
#
# # get a second vector of estimates for checking how large
# # random variation is
#
# p2 <- estimPVal(cbfit,x,permute.n=10)
#
# plot(p1,p2,xlim=c(0,1),ylim=c(0,1),xlab="permute 1",ylab="permute 2")
# ## End(Not run)
Run the code above in your browser using DataLab