## Not run:
# # Generate some survival data with 10 informative covariates
# n <- 200; p <- 100
# beta <- c(rep(1,10),rep(0,p-10))
# x <- matrix(rnorm(n*p),n,p)
# real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
# cens.time <- rexp(n,rate=1/10)
# status <- ifelse(real.time <= cens.time,1,0)
# obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)
#
# # Determine step-size modification factor. As there is no connection matrix,
# # perform search into both directions
#
# optim.res <- optimStepSizeFactor(direction="both",
# time=obs.time,status=status,x=x,
# trace=TRUE)
#
# # Fit with obtained step-size modification parameter and optimal number of boosting
# # steps obtained by cross-validation
#
# cbfit <- CoxBoost(time=obs.time,status=status,x=x,
# stepno=optim.res$optimal.step,
# stepsize.factor=optim.res$optimal.factor)
# summary(cbfit)
#
# ## End(Not run)
Run the code above in your browser using DataLab