# \donttest{
# Generate some survival data with 10 informative covariates
n <- 200; p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)
# determine penalty parameter
optim.res <- optimCoxBoostPenalty(time=obs.time,status=status,x=x,
trace=TRUE,start.penalty=500)
# Fit with obtained penalty parameter and optimal number of boosting
# steps obtained by cross-validation
cbfit <- CoxBoost(time=obs.time,status=status,x=x,
stepno=optim.res$cv.res$optimal.step,
penalty=optim.res$penalty)
summary(cbfit)
# }
Run the code above in your browser using DataLab