Usage
searchCrossOverDesign(s, p, v, model = "Standard additive model",
eff.factor = 1, v.rep, balance.s = FALSE, balance.p = FALSE,
verbose = 0, model.param = list(), n = c(5000, 20), jumps = c(5, 50),
start.designs, random.subject = FALSE, contrast, correlation = NULL,
rho = 0)
Arguments
model
Model - one of the following: "Standard additive model" (2),
"Second-order carry-over effects" (3), "Full set of interactions" (3),
"Self-adjacency model" (3), "Placebo model" (2), "No carry-over into self
model" (2), "Treatment decay model" (2), "Proport
eff.factor
Weights for different efficiency factors. (Not used in the
moment.)
v.rep
Integer vector specifying how often each treatment should be
assigned (sum must equal s*p).
balance.s
Boolean specifying whether to allocate the treatments as
equally as possible to each sequence (can result in loss of efficiency).
balance.p
Boolean specifying whether to allocate the treatments as
equally as possible to each period (can result in loss of efficiency).
verbose
Level of verbosity, a number between 0 and 10. The default
verbose=0 does not print any output, while verbose=10 prints
any available notes.
model.param
List of additional model specific parameters. In the
moment these are ppp, the proportionality parameter for the
proportionality model, and placebos, the number of placebo treatments
in the placebo model.
n
n=c(n1,n2) with n1 the number of hill climbing steps
per trial and n2 the number of searches from random start matrices.
jumps
To reduze the possibility of the hill-climbing algorithm to get
stuck in local extrema long jumps of distance d can be performed all
k steps. This can be specified as long.jumps=c(d,k). If
long.jumps has only
start.designs
A single design or a list of start designs. If missing or to few start
designs are specified (with regard to parameter n which specifies a
number of 20 start designs as default) the start designs are generated
randomly with the sample function.
random.subject
Should the subject effects be random (random.subject=TRUE)
or fixed effects (random.subject=FALSE).
contrast
Contrast matrix to be optimised. TODO: Example and better
explanation for contrast.
correlation
Either a correlation matrix for the random subject effects or one
of the following character strings: "equicorrelated", "autoregressive"
rho
Parameter for the correlation if parameter correlation is a character string.