
Last chance! 50% off unlimited learning
Sale ends in
fitCyclopsModel
fits a Cyclops model data object
fitCyclopsModel(cyclopsData, prior = createPrior("none"), control = createControl(), weights = NULL, forceNewObject = FALSE, returnEstimates = TRUE, startingCoefficients = NULL)
"control"
"none" |
Useful for finding MLE |
"laplace" |
L_1 regularization |
"normal" |
L_2 regularization |
Simpson SE, Madigan D, Zorych I, Schuemie M, Ryan PB, Suchard MA. Multiple self-controlled case series for large-scale longitudinal observational databases. Biometrics, 69, 893-902, 2013.
Mittal S, Madigan D, Burd RS, Suchard MA. High-dimensional, massive sample-size Cox proportional hazards regression for survival analysis. Biostatistics, 15, 207-221, 2014.
## Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
cyclopsData <- createCyclopsData(counts ~ outcome + treatment, modelType = "pr")
cyclopsFit <- fitCyclopsModel(cyclopsData, prior = createPrior("none"))
coef(cyclopsFit)
confint(cyclopsFit, c("outcome2","treatment3"))
predict(cyclopsFit)
Run the code above in your browser using DataLab