parallelMRFA(X, Ndatsets = 500, percent = 95, corr= "Pearson", display = TRUE,
graph = TRUE)
parallelMRFA
is based on the procedure proposed by Timmerman and Lorenzo-Seva (2011) which is designed for assessing the dimensionality of a variable set. The principal advantage of using MRFA (Ten Berge & Kiers, 1991) instead the usual PCA extraction process is that the eigenvalues obtained from MRFA can be used to estimate the explained common variance per factor.The eigenvalue sampling distribution is obtaining using a nonparametric approach: a permutation of the raw data (Buja & Eyuboglu, 1992). This approach is recommended for PA especially in cases where the observed data ditribution clearly deviates from normality.
If the matrix to analyze is not positive-defined, a smoothering procedure will be applied (Devlin, Gnanadesikan & Kettenring, 1981).
Devlin, S. J., Gnanadesikan, R., & Kettenring, J. R. (1981). Robust estimation of dispersion matrices and principal components. Journal of the American Statistical Association, 76, 354-362. http://doi.org/10.1080/01621459.1981.10477654
ten Berge, J. M. F., & Kiers, H. A. L. (1991). A numerical approach to the approximate and the exact minimum rank of a covariance matrix. Psychometrika, 56(2), 309<U+2013>315. http://doi.org/10.1007/BF02294464
Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209-220. http://doi.org/10.1037/a0023353
## perform a Parallel Analysis using an example Database with only 10 random data sets and
## using the 90th percentile of distribution of the random data
parallelMRFA(IDAQ, Ndatsets=10, percent=90)
## For speeding purposes, the number of datasets have been largely reduced. For a proper
## use of parallelMRFA, we recommend to use the default Ndatsets value (Ndatsets=500)
Run the code above in your browser using DataLab