frogs
data frame has 212 rows and 11 columns.
The data are on the distribution of the Southern Corroboree
frog, which occurs in the Snowy Mountains area of New South Wales,
Australia.data(frogs)
data(frogs)
print("Multiple Logistic Regression - Example 8.2")
plot(northing ~ easting, data=frogs, pch=c(1,16)[frogs$pres.abs+1],
xlab="Meters east of reference point", ylab="Meters north")
pause()
pairs(frogs[,4:10], oma=c(2,2,2,2), cex=0.5)
pause()
oldpar <- par(mfrow=c(1,3))
for(nam in c("distance","NoOfPools","NoOfSites")){
y <- frogs[,nam]
plot(density(y),main="",xlab=nam)
par(oldpar)
}
pause()
attach(frogs)
pairs(cbind(altitude,log(distance),log(NoOfPools),NoOfSites),
panel=panel.smooth, labels=c("altitude","log(distance)",
"log(NoOfPools)","NoOfSites"))
detach(frogs)
frogs.glm0 <- glm(formula = pres.abs ~ altitude + log(distance) +
log(NoOfPools) + NoOfSites + avrain + meanmin + meanmax,
family = binomial, data = frogs)
summary(frogs.glm0)
pause()
frogs.glm <- glm(formula = pres.abs ~ log(distance) + log(NoOfPools) +
meanmin +
meanmax, family = binomial, data = frogs)
oldpar <- par(mfrow=c(2,2))
termplot(frogs.glm, data=frogs)
par(oldpar)
pause()
termplot(frogs.glm, data=frogs, partial.resid=TRUE)
cv.binary(frogs.glm0) # All explanatory variables
pause()
cv.binary(frogs.glm) # Reduced set of explanatory variables
pause()
for (j in 1:4){
rand <- sample(1:10, 212, replace=TRUE)
all.acc <- cv.binary(frogs.glm0, rand=rand, print.details=FALSE)$acc.cv
reduced.acc <- cv.binary(frogs.glm, rand=rand, print.details=FALSE)$acc.cv
cat("All:", round(all.acc,3), "Reduced:", round(reduced.acc,3))
}
Run the code above in your browser using DataLab