Learn R Programming

DAAG (version 0.37)

kiwishade: Kiwi Shading Data

Description

The kiwishade data frame has 48 rows and 4 columns. The data are from a designed experiment that compared different kiwifruit shading treatments. There are four vines in each plot, and four plots (one for each of four treatments) in each the three blocks. Each plot has the same number of vines, each block has the same number of plots, with each treatment occurring the same number of times.

Usage

data(kiwishade)

Arguments

source

Snelgar, W.P., Manson. P.J., Martin, P.J. 1992. Influence of time of shading on flowering and yield of kiwifruit vines. Journal of Horticultural Science 67: 481-487.

Details

The northernmost plots were grouped together because they were similarly affected by shading from the sun in the north. For the remaining two blocks shelter effects, whether from the west or from the east, were thought more important.

References

Maindonald J H 1992. Statistical design, analysis and presentation issues. New Zealand Journal of Agricultural Research 35: 121-141.

Examples

Run this code
data(kiwishade)
print("Data Summary - Example 2.2.1")
attach(kiwishade)
kiwimeans <- aggregate(yield, by=list(block, shade), mean)
names(kiwimeans) <- c("block","shade","meanyield")

kiwimeans[1:4,]
pause()
 
print("Multilevel Design - Example 9.3")
kiwishade.aov <- aov(yield ~ shade+Error(block/shade),data=kiwishade)
summary(kiwishade.aov)
pause()


sapply(split(yield, shade), mean)

pause()

kiwi.table <- t(sapply(split(yield, plot), as.vector))
kiwi.means <- sapply(split(yield, plot), mean)
kiwi.means.table <- matrix(rep(kiwi.means,4), nrow=12, ncol=4)   
kiwi.summary <- data.frame(kiwi.means, kiwi.table-kiwi.means.table)   
names(kiwi.summary)<- c("Mean", "Vine 1", "Vine 2", "Vine 3", "Vine 4")
kiwi.summary
mean(kiwi.means) # the grand mean (only for balanced design)

require(nlme)
kiwishade.lme <- lme(fixed = yield ~ shade, random = ~ 1 | block/plot, 
data=kiwishade)
res <- residuals(kiwishade.lme)
hat <- fitted(kiwishade.lme) # By default fitted(kiwishade.lme, level=2)
coplot(res ~ hat | kiwishade$block, pch=16, columns=3,
  xlab= "Fitted", ylab="Residuals")
 
res <- residuals(kiwishade.lme)
hat <- fitted(kiwishade.lme, level=0) # shade effects only
unique(hat) # There are just four distinct values, one per treatment
coplot(res ~ hat | kiwishade$block, pch=16, columns=3,
  xlab="Fitted", ylab="Residuals")

n.omit <- 2
take <- rep(TRUE, 48)
take[sample(1:48,2)] <- FALSE
kiwishade.lme <- lme(yield ~ shade, data = kiwishade,
                     random = ~1 | block/plot, subset=take)
VarCorr(kiwishade.lme)[4, 1]  # Plot component of variance
VarCorr(kiwishade.lme)[4, 1]  # Vine component of variance

detach(kiwishade)

Run the code above in your browser using DataLab