Last chance! 50% off unlimited learning
Sale ends in
Loss from Variable Dropout
variable_importance(explainer, loss_function = loss_sum_of_squares, ...,
type = "raw", n_sample = 1000)
a model to be explained, preprocessed by the 'explain' function
a function thet will be used to assess variable importance
other parameters
character, type of transformation that should be applied for dropout loss. 'raw' results raw drop lossess, 'ratio' returns drop_loss/drop_loss_full_model
while 'difference' returns drop_loss - drop_loss_full_model
number of observations that should be sampled for calculation of variable importance. If negative then variable importance will be calculated on whole dataset (no sampling).
An object of the class 'variable_leverage_explainer'. It's a data frame with calculated average response.
Predictive Models: Visual Exploration, Explanation and Debugging https://pbiecek.github.io/PM_VEE/
# NOT RUN {
# }
# NOT RUN {
library("breakDown")
library("randomForest")
HR_rf_model <- randomForest(status == "fired"~., data = HR, ntree = 100)
explainer_rf <- explain(HR_rf_model, data = HR, y = HR$status == "fired")
vd_rf <- variable_importance(explainer_rf, type = "raw")
vd_rf
HR_glm_model <- glm(status == "fired"~., data = HR, family = "binomial")
explainer_glm <- explain(HR_glm_model, data = HR, y = HR$status == "fired")
logit <- function(x) exp(x)/(1+exp(x))
vd_glm <- variable_importance(explainer_glm, type = "raw",
loss_function = function(observed, predicted)
sum((observed - logit(predicted))^2))
vd_glm
library("xgboost")
model_martix_train <- model.matrix(status == "fired" ~ .-1, HR)
data_train <- xgb.DMatrix(model_martix_train, label = HR$status == "fired")
param <- list(max_depth = 2, eta = 1, silent = 1, nthread = 2,
objective = "binary:logistic", eval_metric = "auc")
HR_xgb_model <- xgb.train(param, data_train, nrounds = 50)
explainer_xgb <- explain(HR_xgb_model, data = model_martix_train,
y = HR$status == "fired", label = "xgboost")
vd_xgb <- variable_importance(explainer_xgb, type = "raw")
vd_xgb
plot(vd_xgb)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab