# NOT RUN {
library(DALEXtra)
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
h2o::h2o.init()
h2o::h2o.no_progress()
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
training_frame = titanic_h2o,
y = "survived",
distribution = "bernoulli",
ntrees = 500,
max_depth = 4,
min_rows = 12,
learn_rate = 0.001
)
explainer_h2o <- explain_h2o(model, titanic_test[,1:17], titanic_test[,18])
explainer_scikit <- explain_scikitlearn(system.file("extdata",
"scikitlearn.pkl",
package = "DALEXtra"),
yml = system.file("extdata",
"testing_environment.yml",
package = "DALEXtra"),
data = titanic_test[,1:17],
y = titanic_test$survived)
library("mlr")
task <- mlr::makeClassifTask(
id = "R",
data = titanic_train,
target = "survived"
)
learner <- mlr::makeLearner(
"classif.gbm",
par.vals = list(
distribution = "bernoulli",
n.trees = 500,
interaction.depth = 4,
n.minobsinnode = 12,
shrinkage = 0.001,
bag.fraction = 0.5,
train.fraction = 1
),
predict.type = "prob"
)
gbm <- mlr::train(learner, task)
explainer_mlr <- explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])
data <- training_test_comparison(explainer_scikit, list(explainer_h2o, explainer_mlr),
training_data = titanic_train[,-18],
training_y = titanic_train[,18])
plot(data)
# }
Run the code above in your browser using DataLab