# NOT RUN {
# NDVI data for Site 1 and Site 2 used in Fig. 5, Jamali et al. 2015
data(NDVI.Site1)
NDVI.Site1 <- ts(NDVI.Site1, start=1982, frequency=12)
data(NDVI.Site2)
NDVI.Site2 <- ts(NDVI.Site2, start=1982, frequency=12)
# Trend of NDVI data for Site 1 and Site 2 used in Fig. 4, Jamali et al. 2015)
data(TREND.Site1)
data(TREND.Site2)
# Examples for DBEST<U+2019>s change detection algorithm
# detecting three greatest changes in NDVI (Fig. 5a, b)
DBEST.Fig5a <- DBEST(data=NDVI.Site1, data.type="cyclical",
seasonality=12, algorithm="change detection",
breakpoints.no=3, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="on")
DBEST.Fig5b <- DBEST(data=NDVI.Site2, data.type="cyclical",
seasonality=12, algorithm="change detection",
breakpoints.no=3, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="on")
# detecting changes >= 0.2 NDVI units
DBEST.examp1 <- DBEST(data=NDVI.Site1, data.type="cyclical",
seasonality=12, algorithm="change detection",
change.magnitude=0.2, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="fig1")
DBEST.examp2 <- DBEST(data=TREND.Site2, data.type="non-cyclical",
seasonality="none", algorithm="change detection",
change.magnitude=0.2, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="fig1")
# }
# NOT RUN {
# Examples for DBEST<U+2019>s generalization algorithm
# the most-simplified trend
DBEST.Fig4a <- DBEST(data=TREND.Site1, data.type="non-cyclical",
seasonality="none", algorithm="generalization",
generalization.percent=100, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="fig1")
DBEST.examp3 <- DBEST(data=NDVI.Site2, data.type="cyclical",
seasonality=12, algorithm="generalization",
generalization.percent=100, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="fig1")
# one breakpoint included in the generalized trend
DBEST.Fig4b <- DBEST(data=TREND.Site1, data.type="non-cyclical",
seasonality="none", algorithm="generalization",
breakpoints.no=1, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="fig1")
DBEST.examp4 <- DBEST(data=NDVI.Site2, data.type="cyclical",
seasonality=12, algorithm="generalization",
breakpoints.no=1, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="fig1")
# the largest variation allowed within the generalized segments <= 0.1 NDVI units
DBEST.Fig4c <- DBEST(data=TREND.Site1, data.type="non-cyclical",
seasonality="none", algorithm="generalization",
change.magnitude=0.1, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="fig1")
DBEST.examp5 <- DBEST(data=NDVI.Site2, data.type="cyclical",
seasonality=12, algorithm="generalization",
change.magnitude=0.2, first.level.shift=0.1,
second.level.shift=0.1, duration=24,
distance.threshold="default", alpha=0.05, plot="fig1")
# the least-simplified trend
DBEST.Fig4d <- DBEST(data=TREND.Site1, data.type="non-cyclical",
seasonality="none", algorithm="generalization",
generalization.percent=0, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="fig1")
DBEST.examp6 <- DBEST(data=NDVI.Site2, data.type="cyclical",
seasonality=12, algorithm="generalization",
generalization.percent=0, first.level.shift=0.1,
second.level.shift=0.2, duration=24,
distance.threshold="default", alpha=0.05, plot="fig1")
# }
# NOT RUN {
# }
# NOT RUN {
<!-- % end don't run -->
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab