Learn R Programming

DChaos (version 0.1-7)

gauss.sim: Simulates time-series data from the Gauss map

Description

This function simulates time-series data from the Gauss map considering the parameter set selected by the user. The initial condition is a random number between 0 and 1. Some initial conditions may lead to an unstable system that will tend to infinity.

Usage

gauss.sim(
  alpha = 6.2,
  beta = -0.5,
  s = 0,
  x0 = runif(1, 0, 1),
  n = 1000,
  n.start = 50
)

Value

A time-series data object generated from the Gauss map with or without an additive measurement noise term. This dataset could be useful for researchers interested in the field of chaotic dynamic systems and non-linear time series analysis and professors (and students) who teach (learn) courses related to those topics.

Arguments

alpha

a non-negative integer denoting the value of parameter alpha (Default 6.2).

beta

a non-negative integer denoting the value of parameter beta (Default -0.5).

s

a non-negative integer denoting the variance value of the error term. If \(s=0\) gives the standard deterministic map (Default 0).

x0

a non-negative integer denoting the initial condition (Default random number between 0 and 1).

n

a non-negative integer denoting the length (Default 1000).

n.start

a non-negative integer denoting the number of observations that will be discarded to ensure that the values are in the attractor (Default 50).

Author

Julio E. Sandubete, Lorenzo Escot

References

Hilborn, R.C. 2004 Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford, Univ. Press, New York.

Examples

Run this code
## set.seed(34)
## Simulates time-series data from the deterministic gauss map
## with a chaotic behaviour.
## ts <- gauss.sim(alpha=6.2, beta=-0.5, s=0, n=1000)
##
## Simulates time-series data from the deterministic gauss map
## with a non-chaotic behaviour.
## ts <- gauss.sim(alpha=4.9, beta=-0.58, s=0, n=1000)

Run the code above in your browser using DataLab