- model
a neural network model fitted using the netfit
function.
- data
a vector
, a time-series object ts
or xts
, a data.frame
, a data.table
or a matrix
depending on the method selected in timelapse
.
- m
a non-negative integer denoting a lower and upper bound for the embedding dimension (Default 1:4).
- lag
a non-negative integer denoting a lower and upper bound for the the reconstruction delay (Default 1:1).
- timelapse
a character denoting if the time-series data are sampled at uniform time-frequency e.g., 1-month, 1-day, 1-hour, 30-min, 5-min, 1-min and so on FIXED
or non-uniform time-frequency which are not equally spaced in time VARIABLE
(Default FIXED
).
- h
a non-negative integer denoting a lower and upper bound for the number of neurones (or nodes) in the single hidden layer (Default 2:10).
- w0maxit
a non-negative integer denoting the maximum iterations to estimate the initial parameter vector of the neural net models (Default 100).
- wtsmaxit
a non-negative integer denoting the maximum iterations to estimate the weights parameter vector of the neural net models (Default 1e6).
- pre.white
a logical value denoting if the user wants to use as points to evaluate the partial derivatives the delayed vectors filtered by the neural net model chosen TRUE
or not FALSE
(Default TRUE
).
- trace
a binary value denoting if the user wants to print the output on the console 1
or not 0
(Default 1).
- seed.t
a logical value denoting if the user wants to fix the seed TRUE
or not FALSE
(Default TRUE).
- seed
a non-negative integer denoting the value of the seed selected if seed.t = TRUE
(Default 56666459).