This function estimates the initial parameter vector of the neural net model.
w0.net(
x,
y,
m = 2,
h = 2,
rangx = 1/max(abs(x)),
w0maxit = 100,
seed.t = TRUE,
seed = 56666459
)
The optimal initial parameter vector of the neural net model considering the argument set selected by the user.
a matrix
or a data.frame
denoting the explanatory variables.
a vector
, a matrix
or a data.frame
denoting the response variable.
a non-negative integer denoting the embedding dimension (Default 2).
a non-negative integer denoting the number of neurones (or nodes) in the single hidden layer (Default 2).
a non-negative integer denoting the range of the explanatory variables (Default 1/max(abs(x)).
a non-negative integer denoting the maximum iterations to estimate the initial parameter vector of the neural net models (Default 100).
a logical value denoting if the user wants to fix the seed TRUE
or not FALSE
(Default TRUE).
a non-negative integer denoting the value of the seed selected if seed.t = TRUE
(Default 56666459).
Julio E. Sandubete, Lorenzo Escot
Ripley, B.D. 1996 Pattern Recognition and Neural Networks. Cambridge.
Venables, W.N., Ripley, B.D. 2002 Modern Applied Statistics with S. Fourth edition. Springer.
Hornik, K., Stinchcombe, M., White, H. 1989 Multilayer feedforward networks are universal approximators. Neural Networks 2(5):359-366.