AlgoParamsDEMCMC
AlgoParamsDEMCMC(
n_params,
n_chains = NULL,
param_names = NULL,
n_iter = 1000,
init_sd = 0.01,
init_center = 0,
n_cores_use = 1,
step_size = NULL,
jitter_size = 1e-06,
parallel_type = "none",
burnin = 0,
thin = 1
)
number of free parameters estimated
number of MCMC chains, 3*n_params is the default value
optional vector of parameter names
number of iterations to run the sampling algorithm, 1000 is default
positive scalar or n_params-dimensional numeric vector, determines the standard deviation of the Gaussian initialization distribution
scalar or n_params-dimensional numeric vector, determines the mean of the Gaussian initialization distribution
number of cores used when using parallelization.
positive scalar, jump size in DE crossover step, default is 2.38/sqrt(2*n_params) which is optimal for multivariate Gaussian target distribution (ter Braak, 2006)
positive scalar, noise is added during crossover step from Uniform(-jitter_size,jitter_size) distribution. 1e-6 is the default value.
string specifying parallelization type. 'none','FORK', or 'PSOCK' are valid values. 'none' is default value.
number of initial iterations to discard. Default value is 0.
positive integer, only every 'thin'-th iteration will be stored. Default value is 1. Increasing thin will reduce the memory required, while running chains for longer.
list of control parameters for the DEMCMC function