# NOT RUN {
#This example assumes an experimenal design of ~Condition_Time.
#Prepare a result list.
res.day1 <- results(dds, contrast=c("Condition_Time", "day1_disease", "day1_control"))
res.day2 <- results(dds, contrast=c("Condition_Time", "day2_disease", "day2_control"))
res.day3 <- results(dds, contrast=c("Condition_Time", "day3_disease", "day3_control"))
myResList <- list(res.day1, res.day2, res.day3)
/*
* Aggregate data for all contrasts in the result list using union aggregation.
* Display the density plot of p-values for the aggregated data.
*/
de_density_plot(res_list=myResList, filename="DE_density_union_pval.pdf",
type="pval", method="union", returnData=FALSE)
/*
* Aggregate data for all contrasts in the result list using intersection aggregation.
* Display the density plot of log fold-change values for the aggregated data.
* Store the aggregate data as DE_lfc_intersect_df.
*/
DE_lfc_intersect_df <- de_density_plot(res_list=myResList,
filename="DE_density_union_pval.pdf",
type="lfc", method="intersection",
returnData=TRUE)
# }
Run the code above in your browser using DataLab