# NOT RUN {
#Prepare a result list.
res.day1 <- results(dds, contrast=c("Condition_Time", "day1_disease", "day1_control"))
res.day2 <- results(dds, contrast=c("Condition_Time", "day2_disease", "day2_control"))
res.day3 <- results(dds, contrast=c("Condition_Time", "day3_disease", "day3_control"))
myResList <- list(res.day1, res.day2, res.day3)
#Prepare an aggregate master data frame.
aggregate_df <- create_master_res(res_list=myResList, filename="master_DE.txt")
/*
* Filter the aggregate data to contain only genes whose gene-wise maximum
* fold-change is greater than 10. This will return genes whose gene-wise maximum
* is > 10.
*/
de_filtered <- de_filter(master_df=aggregate_df, metric="max", threshold=10,
operator="greater", absolute=FALSE)
/*
* Filter the aggregate data to contain only genes whose gene-wise minimum
* fold-change is greater than an absoulte value of 4. This will return genes
* where the gene-wise minimum is < -4 and > +4.
*/
de_filtered <- de_filter(master_df=aggregate_df, metric="min", threshold=4,
operator="greater", absolute=TRUE)
/*
* Filter the aggregate data to contain only genes whose gene-wise standard
* deviation is less than an absoulte value of 2. This will return genes
* where the gene-wise standard deviation is > -2 and < +2.
*/
de_filtered <- de_filter(master_df=aggregate_df, metric="sd", threshold=2,
operator="less", absolute=TRUE)
# }
Run the code above in your browser using DataLab