# NOT RUN {
testData = createData(sampleSize = 200, family = poisson(),
randomEffectVariance = 0, numGroups = 5)
fittedModel <- glm(observedResponse ~ Environment1,
family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)
######### main plotting function #############
# for all functions, quantreg = T will be more
# informative, but slower
plot(simulationOutput, quantreg = FALSE)
############# qq plot ######################
plotQQunif(simulationOutput = simulationOutput)
############# residual plots ###############
# rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)
# residual vs predictors, using explicit values for pred, residual
plotResiduals(pred = testData$Environment1,
residuals = simulationOutput$scaledResiduals, quantreg = FALSE)
# if pred is a factor, or asFactor = T, will produce a boxplot
plotResiduals(pred = testData$group, residuals = simulationOutput$scaledResiduals,
quantreg = FALSE, asFactor = TRUE)
# All these options can also be provided to the main plotting function
plot(simulationOutput, quantreg = FALSE, rank = FALSE)
# If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, asFactor = TRUE) # we see one residual point per RE
# }
Run the code above in your browser using DataLab