Plot each estimated individual components of GNG model
(mixture of exponential and k-normal) fitted using gng.fit
.
gng.plot.comp(data, obj, new.plot = TRUE, legpos = NULL, xlim=NULL,
ylim=NULL, xlab=NULL, ylab=NULL, main=NULL,lwd=NULL,...)
an R list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.
a list object returned by gng.fit
function.
optional logical variable on whether to create new plot.
optional vector of (x,y) location for the legend position
optional x-axis limit (see par
).
optional y-axis limit (see par
).
optional x-axis label (see par
).
optional y-axis label (see par
).
optional plot title (see par
).
optional line width for lines in the plot (see par
).
additional graphical arguments to be passed to methods (see par
).
The components representing differential data are denoted by asterisk (*) symbol on the plot legend.
gng.plot.mix
, gng.plot.comp
, gng.plot.fit
,
gng.plot.qq
, DIME.plot.fit
, inudge.plot.fit
.
# NOT RUN {
library(DIME);
# generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1);
rpi <- c(.05,.45,.45,.05); rbeta <- c(12,10);
set.seed(1234);
chr1 <- c(-rgamma(ceiling(rpi[1]*N1),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N1),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N1),shape = 1,scale = rbeta[2]));
chr2 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
chr3 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
# analyzing only chromosome 1 and chromosome 3
data <- list(chr1,chr3);
# Fitting a GNG model with 2-normal component
bestGng <- gng.fit(data,K=2);
# plot individual components of GNG
gng.plot.comp(data,bestGng);
# plot mixture component on top of the individual components plot
gng.plot.mix(bestGng,resolution=1000,new.plot=FALSE);
# }
Run the code above in your browser using DataLab