library(DImodels)
## Load data
data(sim2)
## Fit model
mod <- glm(response ~ (p1 + p2 + p3 + p4)^2 + 0, data = sim2)
## Visualise change as we move from the centroid community to each monoculture
plot_data <- simplex_path_data(starts = sim2[c(19, 20, 19, 20), ],
ends = sim2[c(47, 52, 55, 60), ],
prop = c("p1", "p2", "p3", "p4"),
model = mod)
## prop will be inferred from data
simplex_path_plot(data = plot_data)
## Show specific curves
simplex_path_plot(data = plot_data[plot_data$.Group %in% c(1, 4), ])
## Show uncertainty using `se = TRUE`
simplex_path_plot(data = plot_data[plot_data$.Group %in% c(1, 4), ],
se = TRUE)
## Change colours of pie-glyphs using `pie_colours`
simplex_path_plot(data = plot_data[plot_data$.Group %in% c(1, 4), ],
se = TRUE,
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"))
## Show pie-glyphs at different points along the curve using `pie_positions`
simplex_path_plot(data = plot_data[plot_data$.Group %in% c(1, 4), ],
se = TRUE,
pie_positions = c(0, 0.25, 0.5, 0.75, 1),
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"))
## Facet plot based on specific variables
simplex_path_plot(data = plot_data,
se = TRUE,
facet_var = "block",
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"))
## Simulataneously create multiple plots for additional variables
sim2$block <- as.numeric(sim2$block)
new_mod <- update(mod, ~ . + block, data = sim2)
plot_data <- simplex_path_data(starts = sim2[c(18), 3:6],
ends = sim2[c(48, 60), 3:6],
prop = c("p1", "p2", "p3", "p4"),
model = new_mod, conf.level = 0.95,
add_var = list("block" = c(1, 2)))
simplex_path_plot(data = plot_data,
pie_colours = c("steelblue1", "steelblue4",
"orange1", "orange4"),
nrow = 1, ncol = 2)
Run the code above in your browser using DataLab