library(DImodels)
## Load data
data(sim1)
## Fit model
mod <- DI(prop = 3:6, DImodel = "AV", data = sim1, y = "response")
## Get effects plot for all species in design
visualise_effects(model = mod)
## Choose a variable of interest using `var_interest`
visualise_effects(model = mod, var_interest = c("p1", "p3"))
## Add custom communities to plot instead of design communities
## Any variable not specified will be assumed to be 0
## Not showing the average curve using `average = FALSE`
visualise_effects(model = mod, average = FALSE,
data = data.frame("p1" = c(0.7, 0.1),
"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4)),
var_interest = c("p2", "p3"))
## Add uncertainty on plot
visualise_effects(model = mod, average = TRUE,
data = data.frame("p1" = c(0.7, 0.1),
"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4)),
var_interest = c("p2", "p3"), se = TRUE)
## Visualise effect of species decrease for particular species
## Show a 99% confidence interval using `conf.level`
visualise_effects(model = mod, effect = "decrease",
average = TRUE, se = TRUE, conf.level = 0.99,
data = data.frame("p1" = c(0.7, 0.1),
"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4),
"p4" = 0),
var_interest = c("p1", "p3"))
## Show effects of both increase and decrease using `effect = "both"`
## and change colours of pie-glyphs using `pie_colours`
visualise_effects(model = mod, effect = "both",
average = FALSE,
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"),
data = data.frame("p1" = c(0.7, 0.1),
"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4),
"p4" = 0),
var_interest = c("p1", "p3"))
# Add additional variables and create a separate plot for each
# \donttest{
visualise_effects(model = mod, effect = "both",
average = FALSE,
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"),
data = data.frame("p1" = c(0.7, 0.1),
"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4),
"p4" = 0),
var_interest = c("p1", "p3"),
add_var = list("block" = factor(c(1, 2),
levels = c(1, 2, 3, 4))))
# }
## Specify `plot = FALSE` to not create the plot but return the prepared data
head(visualise_effects(model = mod, effect = "both",
average = FALSE, plot = FALSE,
pie_colours = c("steelblue1", "steelblue4",
"orange1", "orange4"),
data = data.frame("p1" = c(0.7, 0.1),
"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4),
"p4" = 0),
var_interest = c("p1", "p3")))
Run the code above in your browser using DataLab