library(DImodels)
## Load data
data(sim1)
## Fit model
mod <- glm(response ~ p1 + p2 + p3 + p4 + 0, data = sim1)
## Create data for visualising effect of adding species 1 to
## the original communities in the data
plot_data <- visualise_effects_data(data = sim1[sim1$block == 1, ],
prop = c("p1", "p2", "p3", "p4"),
var_interest = "p1",
effect = "increase", model = mod)
## Create plot
visualise_effects_plot(data = plot_data)
## Show specific curves with prediction intervals
subset <- custom_filter(plot_data, .Group %in% c(7, 15))
visualise_effects_plot(data = subset, prop = 1:4, se = TRUE)
## Do not show average effect line
visualise_effects_plot(data = subset,
se = TRUE, average = FALSE)
## Change colours of the pie-glyph slices
visualise_effects_plot(data = subset,
pie_colours = c("darkolivegreen", "darkolivegreen1",
"steelblue4", "steelblue1"))
#' ## Simultaneously create multiple plots for additional variables
sim1$block <- as.numeric(sim1$block)
new_mod <- update(mod, ~ . + block, data = sim1)
plot_data <- visualise_effects_data(data = sim1[c(1, 5, 9, 13), 3:6],
prop = c("p1", "p2", "p3", "p4"),
var_interest = "p3",
model = new_mod, conf.level = 0.95,
add_var = list("block" = c(1, 2)))
visualise_effects_plot(data = plot_data,
average = FALSE,
pie_colours = c("darkolivegreen", "darkolivegreen1",
"steelblue4", "steelblue1"))
Run the code above in your browser using DataLab