Learn R Programming

⚠️There's a newer version (1.2.2) of this package.Take me there.

DIscBIO (version 1.2.1)

A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics

Description

An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. More details on Ghannoum et. al. (2021) . This package implements extensions of the work published by Ghannoum et. al. (2019) .

Copy Link

Version

Install

install.packages('DIscBIO')

Monthly Downloads

238

Version

1.2.1

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Waldir Leoncio

Last Published

October 9th, 2023

Functions in DIscBIO (1.2.1)

HumanMouseGeneIds

Human and Mouse Gene Identifiers.
PCAplotSymbols

Plot PCA symbols
J48DT

J48 Decision Tree
plottSNE

tSNE map
plotOrderTsne

Plotting the pseudo-time ordering in the t-SNE map
plotLabelstSNE

tSNE map with labels
VolcanoPlot

Volcano Plot
as.DISCBIO

Convert Single Cell Data Objects to DISCBIO.
prepExampleDataset

Prepare Example Dataset
RpartEVAL

Evaluating the performance of the RPART Decision Tree.
check.format

Check format
PlotmclustMB

Plotting the Model-based clusters in PCA.
pseudoTimeOrdering

Pseudo-time ordering
PlotMBpca

Plotting pseudo-time ordering or gene expression in Model-based clustering in PCA
RpartDT

RPART Decision Tree
reformatSiggenes

Reformat Siggenes Table
PPI

Defining protein-protein interactions (PPI) over a list of genes,
foldchange.seq.twoclass.unpaired

Foldchange of twoclass unpaired sequencing data
customConvertFeats

Automatic Feature Id Conversion.
clustheatmap

Plotting clusters in a heatmap representation of the cell distances
rankcols

Rank columns
comptSNE

Computing tSNE
samr.estimate.depth

Estimate sequencing depths
sammy

Significance analysis of microarrays
plotGap

Plotting Gap Statistics
valuesG1msTest

Single-cells data from a myxoid liposarcoma cell line
plotExptSNE

Highlighting gene expression in the t-SNE map
replaceDecimals

Replace Decimals
plotSymbolstSNE

tSNE map for K-means clustering with symbols
resa

Resampling
retrieveURL

Retries a URL
plotSilhouette

Silhouette Plot for K-means clustering
wilcoxon.unpaired.seq.func

Twoclass Wilcoxon statistics
DISCBIO

The DISCBIO Class
Clustexp

Clustering of single-cell transcriptome data
DEGanalysis

Determining differentially expressed genes (DEGs) between all individual clusters.
DISCBIO2SingleCellExperiment

Convert a DISCBIO object to a SingleCellExperiment.
DEGanalysis2clust

Determining differentially expressed genes (DEGs) between two particular clusters.
FinalPreprocessing

Final Preprocessing
ClustDiffGenes

ClustDiffGenes
Exprmclust

Performing Model-based clustering on expression values
FindOutliers

Inference of outlier cells
ClassVectoringDT

Generating a class vector to be used for the decision tree analysis.
Normalizedata

Normalizing and filtering
NetAnalysis

Networking analysis.
KmeanOrder

Pseudo-time ordering based on k-means clusters
J48DTeval

Evaluating the performance of the J48 decision tree.
Jaccard

Jaccard’s similarity
Networking

Plotting the network.
NoiseFiltering

Noise Filtering