dmrcate
.
Heatmap and mean methylation plots are shown as well as genomic coordinates
and proximal coding regions.
DMR.plot(ranges, dmr, CpGs, phen.col, genome = c("hg19", "hg38", "mm10"), array.annotation = c(array = "IlluminaHumanMethylation450k", annotation = "ilmn12.hg19"), samps = NULL, ...)
extractRanges()
describing DMR coordinates.
ranges
(one integer only) indicating which DMR to be
plotted.
CpGs
. See vignette for worked example.
"hg19"
,
"hg38"
or "mm10"
minfi
, i.e. annotation <-
annotation(minfiobject)
where minfiobject
is a
[Genomic](Methyl|Ratio)Set)
.
Argument for 450K arrays:
c(array = "IlluminaHumanMethylation450k", annotation = "ilmn12.hg19")
.
Argument for EPIC arrays:
c(array = "IlluminaHumanMethylationEPIC", annotation = "ilm10b2.hg19")
.
An error will be thrown if you attempt one on CpGs
with rownames on the other, due to non-overlapping probes
on both platforms. Only applicable when datatype="array"
.
phen.col
.
Default is all samples plotted.
Gviz:::plotTracks()
.
## Not run:
# data(dmrcatedata)
# myMs <- logit2(myBetas)
# myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)
# patient <- factor(sub("-.*", "", colnames(myMs)))
# type <- factor(sub(".*-", "", colnames(myMs)))
# design <- model.matrix(~patient + type)
# myannotation <- cpg.annotate("array", myMs.noSNPs, analysis.type="differential",
# design=design, coef=39)
# dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2)
# results.ranges <- extractRanges(dmrcoutput, genome = "hg19")
# groups <- c(Tumour="magenta", Normal="forestgreen")
# cols <- groups[as.character(type)]
# samps <- c(1:6, 38+(1:6))
# DMR.plot(ranges=results.ranges, dmr=1, CpGs=myBetas, phen.col=cols, genome="hg19", samps=samps)
# ## End(Not run)
Run the code above in your browser using DataLab