analysis.type) 
  and chromosomal position, or
  - Standardise this information from DSS:::DMLtest() to the
    same data format.
  
cpg.annotate(datatype = c("array", "sequencing"),  object,  annotation=c(array = "IlluminaHumanMethylation450k", annotation = "ilmn12.hg19"),  analysis.type = c("differential", "variability"),  design,  contrasts = FALSE,  cont.matrix = NULL,  fdr = 0.05,  coef,  ...)DSS:::DMLtest().
  object. Identical context to minfi,
    i.e. annotation <- annotation(minfiobject) where
    minfiobject is a [Genomic](Methyl|Ratio)Set). 
    
    Argument for 450K arrays: 
    
    c(array = "IlluminaHumanMethylation450k", annotation = "ilmn12.hg19").
    
    Argument for EPIC arrays:
    
    c(array = "IlluminaHumanMethylationEPIC", annotation = "ilm10b2.hg19").
    
    An error will be thrown if you attempt one on an object
    with rownames on the other, due to non-overlapping probes 
    on both platforms. Only applicable when datatype="array".
  "differential" for dmrcate() to return DMRs and
    "variability" to return VMRs. Only applicable when datatype="array".
  limma. Must have an intercept if contrasts=FALSE.
    Applies only when analysis.type="differential". 
    Only applicable when datatype="array".
  limma-style contrast matrix is specified.
    Only applicable when datatype="array".
  Limma-style contrast matrix for explicit contrasting. For each call to cpg.annotate, only one contrast will be fit. 
    Only applicable when datatype="array".
  design corresponding to the phenotype
    comparison. Corresponds to the comparison of interest in design
    when contrasts=FALSE, otherwise must be a column name in 
    cont.matrix. Applies only when analysis.type="differential"
    and when datatype="array".
  limma function lmFit(). 
    Applies only when analysis.type="differential" and when datatype="array".
  dmrcate, containing
  the vectors:
  ID: Illumina probe ID or row number
    stat: t-statistic or Wald statistics between phenotypes for each CpG
    CHR: Chromosome which the CpG maps to
    pos: Genomic coordinate (on CHR) that the CpG maps to
    betafc: The beta fold change according to the given design
    indfdr: Individually-derived FDRs for each CpG 
    is.sig: Logical denoting either significance from fdr (analysis.type="differential") or top ventile of variable probes (analysis.type="variability")
  Feng, H., Conneely, K. N., & Wu, H. (2014). A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Research, 42(8), e69.
Peters T.J., Buckley M.J., Statham, A., Pidsley R., Samaras K., Lord R.V., Clark S.J. and Molloy P.L. De novo identification of differentially methylated regions in the human genome. Epigenetics & Chromatin 2015, 8:6, doi:10.1186/1756-8935-8-6.
## Not run: 
# data(dmrcatedata)
# myMs <- logit2(myBetas)
# myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)
# patient <- factor(sub("-.*", "", colnames(myMs)))
# type <- factor(sub(".*-", "", colnames(myMs)))
# design <- model.matrix(~patient + type) 
# myannotation <- cpg.annotate("array", myMs.noSNPs, analysis.type="differential",
#     design=design, coef=39)
# ## End(Not run)
Run the code above in your browser using DataLab