rpart object
prettyTree(t, compress = F, branch = 0.2, margin = 0.1, uniform = T, all = T, cex = 0.8, font = 10, use.n = T, fwidth = 0.5, fheight = 0.45, center = 0, ...)rpart object
plot.rpart(). See the help page of
this function for further details. Defaults to F.
plot.rpart(). See the help page of
this function for further details. Defaults to 0.2.
plot.rpart(). See the help page of
this function for further details. Defaults to 0.1.plot.rpart(). See the help page of
this function for further details. Defaults to T.text.rpart(). See the help page of
this function for further details. Defaults to T.text.rpart(). See the help page of
this function for further details. Defaults to T.text.rpart(). See the help page of
this function for further details. Defaults to 0.5.text.rpart(). See the help page of
this function for further details. Defaults to 0.45.plot.rpart() and text.rpart()
plot() and then the function text() to a
rpart object: it essentially obtains a graphical representation
of a tree-based model. The basic differences are related to visual
formatting of the trees.
Torgo, L. (2010) Data Mining using R: learning with case studies, CRC Press (ISBN: 9781439810187).
plot.rpart, text.rpart,
rpartXse, rpart
data(iris)
tree <- rpartXse(Species ~ ., iris)
## Not run:
# prettyTree(tree)
# prettyTree(tree,all=F,use.n=F,branch=0)
# ## End(Not run)
Run the code above in your browser using DataLab