pContrib_locus: Compute the posterior probabilities for \(\Pr(m|n_0)\) for a given prior
\(\Pr(m)\).
Description
Compute a matrix of posterior probabilties \(\Pr(m|n_0)\) where \(m\)
ranges from 1 to \(m_{\max}\), and \(n_0\) is
\(0,\ldots,2m_{\max}\). This is done by evaluating
\(\Pr(m|n_0)=Pr(n_0|m)Pr(m)/Pr(n)\), where
\(\Pr(n_0|m)\) is evaluated by pNoA.
Returns a matrix \([\Pr(m|n_0)]\) for
\(m = 1,\ldots,m.max\) and \(n_0 = 1,\ldots,2m.max\).
Arguments
prob
Vectors with allele probabilities for the specific locus
m.prior
A vector with prior probabilities (summing to 1), where the
length of m.prior determines the plausible range of \(m\)
m.max
Derived from the length of m.prior, and if
m.prior=NULL a uniform prior is speficied by m.max:
m.prior = rep(1/m.max,m.max).
pnoa.locus
A named vector of locus specific probabilities
\(P(N(m)=n), n=1,\ldots,2m\).
theta
The coancestery coefficient
Author
Torben Tvedebrink, James Curran
Details
Computes a matrix of \(\Pr(m|n_0)\) values for a specific locus.
References
T. Tvedebrink (2014). 'On the exact distribution of the number of
alleles in DNA mixtures', International Journal of Legal Medicine; 128(3):427--37.
<https://doi.org/10.1007/s00414-013-0951-3>
## Simulate some allele frequencies: freqs <- simAlleleFreqs()
## Compute Pr(m|n0) for m = 1, ..., 5 and n0 = 1, ..., 10 for the first locus: pContrib_locus(prob = freqs[[1]], m.max = 5)