Learn R Programming

DNetFinder (version 1.1)

DNetFinder-package: tools:::Rd_package_title("DNetFinder")

Description

tools:::Rd_package_description("DNetFinder")

Arguments

Author

tools:::Rd_package_author("DNetFinder")

Maintainer: tools:::Rd_package_maintainer("DNetFinder")

Details

tools:::Rd_package_indices("DNetFinder")

References

Li, X., Zhao, T., Yuan, X., Liu, H. (2015). The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R. Journal of Machine Learning Research, 16:553-557

Liu, H., Lafferty, J., Wasserman, L. (2009). The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs. Journal of Machine Learning Research, 10:2295-2328

Liu, W. (2017). Structural Similarity and Difference Testing on Multiple Sparse Gaussian Graphical Models. Annals of Statistics, 45(6):2680-2707

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B, 58(1):267-288

Zhang, Q. (2017). Structural Difference Testing on Multiple Nonparanormal Graphical Models with False Discovery Rate Control. Preprint.

See Also

lassoGGM(), lassoNPN(), DNetGGM(), DNetNPN()

Examples

Run this code
library(flare)
library(DNetFinder)
Data1=read.table(system.file("extdata","Data1.txt",package="DNetFinder"),header=FALSE)
Data2=read.table(system.file("extdata","Data2.txt",package="DNetFinder"),header=FALSE)
BetaGGM1=read.table(system.file("extdata","BetaGGM1.txt",package="DNetFinder"),header=FALSE)
BetaGGM2=read.table(system.file("extdata","BetaGGM2.txt",package="DNetFinder"),header=FALSE)
BetaNPN1=read.table(system.file("extdata","BetaNPN1.txt",package="DNetFinder"),header=FALSE)
BetaNPN2=read.table(system.file("extdata","BetaNPN2.txt",package="DNetFinder"),header=FALSE)
est_coefGGM=lassoGGM(Data1)
est_coefNPN=lassoNPN(Data1)
est_DNGGM=DNetGGM(Data1,Data2,BetaGGM1,BetaGGM2,alpha=0.1)
est_DNNPN=DNetNPN(Data1,Data2,BetaNPN1,BetaNPN2,alpha=0.1)

Run the code above in your browser using DataLab