Learn R Programming

DNetFinder (version 1.1)

lassoGGM: Estimating the regression coefficients in GGMs with lasso

Description

The function "lassoGGM" computes the lasso estimates of the regression coefficents in GGMs for constructing the test statistic.

Usage

lassoGGM(Data_mat)

Value

The estimated coefficient matrix by lasso

Arguments

Data_mat

A n by p data matrix, where each row represents one observation

Author

Qingyang Zhang

Details

The tuning parameter in the lasso regression is chosen as in Liu (2017).

References

Li, X., Zhao, T., Yuan, X., Liu, H. (2015). The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R. Journal of Machine Learning Research, 16:553-557

Liu, H., Lafferty, J., Wasserman, L. (2009). The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs. Journal of Machine Learning Research, 10:2295-2328

Liu, W. (2017). Structural Similarity and Difference Testing on Multiple Sparse Gaussian Graphical Models. Annals of Statistics, 45(6):2680-2707

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B, 58(1):267-288

Zhang, Q. (2017). Structural Difference Testing on Multiple Nonparanormal Graphical Models with False Discovery Rate Control. Preprint.

See Also

lassoNPN()

Examples

Run this code
Data1=read.table(system.file("extdata","Data1.txt",package="DNetFinder"),header=FALSE)
est_coefGGM=lassoGGM(Data1)

Run the code above in your browser using DataLab