## Not run:
#
# # School Girls Data Example
#
# data(schoolgirls)
# attach(schoolgirls)
#
# # Prior information
#
# prior<-list(alpha=1,
# tau1=0.01,tau2=0.01,
# nu0=4.01,
# tinv=diag(10,2),
# nub=4.01,
# tbinv=diag(10,2),
# mb=rep(0,2),
# Sb=diag(1000,2))
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
#
# nburn<-5000
# nsave<-10000
# nskip<-20
# ndisplay<-1000
# mcmc <- list(nburn=nburn,nsave=nsave,nskip=nskip,
# ndisplay=ndisplay)
#
# # Fitting the model
#
# fit1 <- DPMlmm(fixed=height~1,random=~age|child,
# prior=prior,mcmc=mcmc,
# state=state,status=TRUE)
# fit1
#
# # Extract random effects
#
# DPMrandom(fit1)
# DPMrandom(fit1,centered=TRUE)
#
# plot(DPMrandom(fit1))
# plot(DPMrandom(fit1,centered=TRUE))
#
# # Extract predictive information of random effects
#
# DPMrandom(fit1,predictive=TRUE)
# plot(DPMrandom(fit1,predictive=TRUE,gridl=c(75,89,3.8,7.5)))
#
# ## End(Not run)
Run the code above in your browser using DataLab