Learn R Programming

DPpackage (version 1.1-6)

DPMrandom: Extracts Random Effects

Description

Extracts random effects from DPpackage objects: DPMlmm, DPMolmm, and DPMglmm.

Usage

DPMrandom(object,centered=FALSE,predictive=FALSE, ngrid=1000,gridl=NULL)

Arguments

object
DPM fitted model object from which random effects estimates can be extracted.
centered
logical variable indicating whether the random effects should be extracted centered, bi, or uncentered thetai.
predictive
logical variable indicating whether actual or predictive information of the random effects should be extracted.
ngrid
number of grid points where the density estimate is evaluated. This is only used if dimension of the random effects is lower or equal than 2. The default value is 1000.
gridl
The limits of the interval or rectangle covered by the grid as c(xl,xu) or c(xl, xu, yl, yu), respectively. If not specified the grid is defined automatically. This is only used if dimension of the random effects is lower or equal than 2 and if predictive=TRUE.

Examples

Run this code
## Not run: 
# 
#     # School Girls Data Example
# 
#       data(schoolgirls)
#       attach(schoolgirls)
# 
#     # Prior information
# 
#       prior<-list(alpha=1,
#                   tau1=0.01,tau2=0.01,
#                   nu0=4.01,
#                   tinv=diag(10,2),
#                   nub=4.01,
#                   tbinv=diag(10,2),
#                   mb=rep(0,2),
#                   Sb=diag(1000,2))
# 
#     # Initial state
#       state <- NULL
# 
#     # MCMC parameters
# 
#       nburn<-5000
#       nsave<-10000
#       nskip<-20
#       ndisplay<-1000
#       mcmc <- list(nburn=nburn,nsave=nsave,nskip=nskip,
#                    ndisplay=ndisplay)
# 
#     # Fitting the model
#     
#       fit1 <- DPMlmm(fixed=height~1,random=~age|child,
#                      prior=prior,mcmc=mcmc,
#                      state=state,status=TRUE)
#       fit1
# 
#     # Extract random effects
#     
#       DPMrandom(fit1)
#       DPMrandom(fit1,centered=TRUE)
#       
#       plot(DPMrandom(fit1))
#       plot(DPMrandom(fit1,centered=TRUE))
# 
#     # Extract predictive information of random effects
#     
#       DPMrandom(fit1,predictive=TRUE)
#       plot(DPMrandom(fit1,predictive=TRUE,gridl=c(75,89,3.8,7.5)))
# 
# ## End(Not run)

Run the code above in your browser using DataLab