## Not run:
#
# ##########################################################
# # Simulated data:
# # Here we replicate the results reported with
# # simulated data by Dunson, Pillai and Park (2007,
# # JRSS Ser. B, 69: 163-183, pag 177) where a different
# # approach is proposed.
# ##########################################################
#
# dtrue <- function(grid,x)
# {
# exp(-2*x)*dnorm(grid,mean=x,sd=sqrt(0.01))+
# (1-exp(-2*x))*dnorm(grid,mean=x^4,sd=sqrt(0.04))
# }
#
# nobs <- 500
# x <- runif(nobs)
# y1 <- x + rnorm(nobs, 0, sqrt(0.01))
# y2 <- x^4 + rnorm(nobs, 0, sqrt(0.04))
#
# u <- runif(nobs)
# prob <- exp(-2*x)
# y <- ifelse(u<prob,y1,y2)
#
# # Prior information
# w <- cbind(y,x)
# wbar <- apply(w,2,mean)
# wcov <- var(w)
#
# prior <- list(a0=10,
# b0=1,
# nu1=4,
# nu2=4,
# s2=0.5*wcov,
# m2=wbar,
# psiinv2=2*solve(wcov),
# tau1=6.01,
# tau2=2.01)
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
#
# mcmc <- list(nburn=5000,
# nsave=5000,
# nskip=3,
# ndisplay=100)
#
# # fitting the model
# xpred <- c(0.00,0.05,0.10,0.15,0.20,0.25,
# 0.30,0.35,0.40,0.45,0.49,0.55,
# 0.60,0.65,0.70,0.75,0.80,0.85,
# 0.88,0.95,1.00)
#
# fit <- DPcdensity(y=y,x=x,xpred=xpred,ngrid=100,
# prior=prior,
# mcmc=mcmc,
# state=state,
# status=TRUE,
# compute.band=TRUE,type.band="PD")
#
# # true model and estimates
# par(mfrow=c(2,3))
#
# plot(fit$grid,fit$densp.h[3,],lwd=1,type="l",lty=2,
# main="x=0.10",xlab="values",ylab="density",ylim=c(0,4))
# lines(fit$grid,fit$densp.l[3,],lwd=1,type="l",lty=2)
# lines(fit$grid,fit$densp.m[3,],lwd=2,type="l",lty=1)
# lines(fit$grid,dtrue(fit$grid,xpred[3]),lwd=2,
# type="l",lty=1,col="red")
#
# plot(fit$grid,fit$densp.h[6,],lwd=1,type="l",lty=2,
# main="x=0.25",xlab="values",ylab="density",ylim=c(0,4))
# lines(fit$grid,fit$densp.l[6,],lwd=1,type="l",lty=2)
# lines(fit$grid,fit$densp.m[6,],lwd=2,type="l",lty=1)
# lines(fit$grid,dtrue(fit$grid,xpred[6]),lwd=2,
# type="l",lty=1,col="red")
#
# plot(fit$grid,fit$densp.h[11,],lwd=1,type="l",lty=2,
# main="x=0.49",xlab="values",ylab="density",ylim=c(0,4))
# lines(fit$grid,fit$densp.l[11,],lwd=1,type="l",lty=2)
# lines(fit$grid,fit$densp.m[11,],lwd=2,type="l",lty=1)
# lines(fit$grid,dtrue(fit$grid,xpred[11]),lwd=2,type="l",
# lty=1,col="red")
#
# plot(fit$grid,fit$densp.h[16,],lwd=1,type="l",lty=2,
# main="x=0.75",xlab="values",ylab="density",ylim=c(0,4))
# lines(fit$grid,fit$densp.l[16,],lwd=1,type="l",lty=2)
# lines(fit$grid,fit$densp.m[16,],lwd=2,type="l",lty=1)
# lines(fit$grid,dtrue(fit$grid,xpred[16]),lwd=2,type="l",
# lty=1,col="red")
#
# plot(fit$grid,fit$densp.h[19,],lwd=1,type="l",lty=2,
# main="x=0.75",xlab="values",ylab="density",ylim=c(0,4))
# lines(fit$grid,fit$densp.l[19,],lwd=1,type="l",lty=2)
# lines(fit$grid,fit$densp.m[19,],lwd=2,type="l",lty=1)
# lines(fit$grid,dtrue(fit$grid,xpred[19]),lwd=2,type="l",
# lty=1,col="red")
#
# # data and mean function
# plot(x,y,xlab="x",ylab="y",main="")
# lines(xpred,fit$meanfp.m,type="l",lwd=2,lty=1)
# lines(xpred,fit$meanfp.l,type="l",lwd=2,lty=2)
# lines(xpred,fit$meanfp.h,type="l",lwd=2,lty=2)
#
# ## End(Not run)
Run the code above in your browser using DataLab