## Not run:
# ######################################################################
# # Simulated Data:
# # mu_i ~ 0.5 N(mub1,Sigmab1) + 0.5 N(mub2,Sigmab2)
# # y_i ~ N(mu_i,Sigma_i)
# # Sigma_1=...=Sigma_n=Sigma assumed to be known
# ######################################################################
# nvar <- 2
# nrec <- 100
# Sigma <- matrix(c(0.25,0.15,0.15,0.25),nrow=nvar,ncol=nvar)
# mub1 <- rep(-1.5,nvar)
# mub2 <- rep( 0.5,nvar)
# Sigmab1 <- matrix(c(0.25,-0.175,-0.175,0.25),nrow=nvar,ncol=nvar)
# Sigmab2 <- matrix(c(0.25, 0.0875, 0.0875,0.25),nrow=nvar,ncol=nvar)
#
# ind <- rbinom(nrec,1,0.5)
# z1 <- mub1+matrix(rnorm(nvar*nrec),nrow=nrec,ncol=nvar)
# z2 <- mub2+matrix(rnorm(nvar*nrec),nrow=nrec,ncol=nvar)
# mu <- ind*z1+(1-ind)*z2
#
# y <- NULL
# for(i in 1:nrec)
# {
# z <- mu[i,]+matrix(rnorm(nvar),nrow=1,ncol=nvar)
# y <- rbind(y,z)
#
# }
# colnames(y) <- c("y1","y2")
#
# ######################################################################
# # Asymptotic variance
# ######################################################################
# z <- NULL
# for(i in 1:nvar)
# {
# for(j in i:nvar)
# {
# z <- c(z,Sigma[i,j])
# }
# }
# asymvar <- matrix(z,nrow=nrec,ncol=nvar*(nvar+1)/2,byrow=TRUE)
#
#
# # Prior information
#
# s2 <-diag(100,nvar)
# m2 <-rep(0,nvar)
# nu <- 4
# psiinv <- diag(1,nvar)
#
# prior<-list(a0=1,
# b0=1/5,
# nu=nu,
# m2=m2,
# s2=s2,
# psiinv=psiinv)
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
#
# nburn <- 500
# nsave <- 1000
# nskip <- 0
# ndisplay <- 100
# mcmc <- list(nburn=nburn,
# nsave=nsave,
# nskip=nskip,
# ndisplay=ndisplay)
#
# # Fitting the model
# fit1 <- DPmultmeta(y=y,asymvar=asymvar,prior=prior,
# mcmc=mcmc,state=state,status=TRUE)
#
# ## End(Not run)
Run the code above in your browser using DataLab