## Not run:
#
# # Prostate cancer data example
# data(nodal)
# attach(nodal)
# lacid<-log(acid)
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
# nburn<-20000
# nsave<-10000
# nskip<-10
# ndisplay<-100
# mcmc <- list(nburn=nburn,nsave=nsave,
# nskip=nskip,ndisplay=ndisplay,
# tune1=1.1,tune2=1.1)
#
# # Prior distribution
# prior <- list(alpha=1, beta0=c(0,rep(0.75,5)),
# Sbeta0=diag(c(100,rep(25,5)),6),M=5)
#
#
# # Fitting the Finite Polya tree model
# fit1 <- FPTbinary(ssln~age+lacid+xray+size+grade,
# prior=prior,mcmc=mcmc,
# state=state,status=TRUE)
# fit1
#
# # Summary with HPD and Credibility intervals
# summary(fit1)
# summary(fit1,hpd=FALSE)
#
# # Plot model parameters (to see the plots gradually set ask=TRUE)
# plot(fit1)
# plot(fit1,nfigr=2,nfigc=2)
#
# # Plot an specific model parameter (to see the plots gradually
# # set ask=TRUE)
# plot(fit1,ask=FALSE,nfigr=1,nfigc=2,param="xray")
# plot(fit1,ask=FALSE,param="link",nfigc=1,nfigr=1)
#
# # Table of Pseudo Contour Probabilities
# anova(fit1)
#
#
# # Fitting parametric models
#
# nburn<-20000
# nsave<-10000
# nskip<-10
# ndisplay<-100
# mcmc <- list(nburn=nburn,nsave=nsave,
# nskip=nskip,ndisplay=ndisplay,
# tune=1.1)
#
# fit2 <- Pbinary(ssln~age+lacid+xray+size+grade,link="probit",
# prior=prior,mcmc=mcmc,state=state,status=TRUE)
#
# fit3 <- Pbinary(ssln~age+lacid+xray+size+grade,link="logit",
# prior=prior,mcmc=mcmc,state=state,status=TRUE)
#
#
# # Model comparison
#
# DPpsBF(fit1,fit2,fit3)
#
# ## End(Not run)
Run the code above in your browser using DataLab