## Not run:
#
# # Normal simulated data
# set.seed(0)
# n <- 400
# sig <- 2
# x0 <- runif(n, 0, 1)
# x1 <- runif(n, 0, 1)
# x2 <- runif(n, 0, 1)
# x3 <- runif(n, 0, 1)
# f0 <- function(x) 2 * sin(pi * x)
# f1 <- function(x) exp(2 * x)
# f2 <- function(x) 0.2*x^11*(10*(1-x))^6+10*(10*x)^3*(1-x)^10
# f3 <- function(x) 0*x
# f <- f0(x0) + f1(x1) + f2(x2)
# e <- rnorm(n, 0, sig)
# y <- f + e
#
# # prior
# prior <- list(taub1=2.02,
# taub2=0.02,
# beta0=rep(0,1),
# Sbeta0=diag(100,1),
# tau1=6.01,
# tau2=2.01)
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
# nburn <- 5000
# nsave <- 5000
# nskip <- 0
# ndisplay <- 100
# mcmc <- list(nburn=nburn,
# nsave=nsave,
# nskip=nskip,
# ndisplay=ndisplay)
#
#
# # fitting the model
# fit1 <- PSgam(formula=y~ps(x0,x1,x2,x3,k=20,degree=3,pord=1),
# family=gaussian(),prior=prior,
# mcmc=mcmc,ngrid=30,
# state=state,status=TRUE)
#
#
# # A binary example
# g <- (f-5)/3
# g <- binomial()$linkinv(g)
# y <- rbinom(n,1,g)
#
# # fitting the model
# fit2 <- PSgam(formula=y~ps(x0,x1,x2,x3,k=20,degree=3,pord=1),
# family=binomial(logit),prior=prior,
# mcmc=mcmc,ngrid=30,
# state=state,status=TRUE)
#
# # Poisson data
# g <- exp(f/4)
# y <- rpois(n,g)
#
# # fitting the model
# fit3 <- PSgam(formula=y~ps(x0,x1,x2,x3,k=20,degree=3,pord=1),
# family=poisson(log),prior=prior,
# mcmc=mcmc,ngrid=30,
# state=state,status=TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab