## Not run:
# ####################################
# # Univariate example
# ####################################
#
# # Data
# data(galaxy)
# galaxy<-data.frame(galaxy,speeds=galaxy$speed/1000)
# attach(galaxy)
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
# nburn <- 2000
# nsave <- 5000
# nskip <- 49
# ndisplay <- 500
# mcmc <- list(nburn=nburn,nsave=nsave,nskip=nskip,ndisplay=ndisplay,
# tune1=0.03,tune2=0.25,tune3=1.8)
#
# # Prior information
# prior<-list(a0=1,b0=0.01,M=6,m0=21,S0=100,sigma=20)
#
# # Fitting the model
#
# fit1 <- PTdensity(y=speeds,ngrid=1000,prior=prior,mcmc=mcmc,
# state=state,status=TRUE)
#
# # Posterior means
# fit1
#
# # Plot the estimated density
# plot(fit1,ask=FALSE)
# points(speeds,rep(0,length(speeds)))
#
# # Plot the parameters
# # (to see the plots gradually set ask=TRUE)
# plot(fit1,ask=FALSE,output="param")
#
# # Extracting the density estimate
# cbind(fit1$x1,fit1$dens)
#
#
# ####################################
# # Bivariate example
# ####################################
#
# # Data
# data(airquality)
# attach(airquality)
#
# ozone <- Ozone**(1/3)
# radiation <- Solar.R
#
# # Prior information
# prior <- list(a0=5,b0=1,M=4,
# m0=c(0,0),S0=diag(10000,2),
# nu0=4,tinv=diag(1,2))
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
# nburn <- 2000
# nsave <- 5000
# nskip <- 49
# ndisplay <- 500
# mcmc <- list(nburn=nburn,nsave=nsave,nskip=nskip,ndisplay=ndisplay,
# tune1=0.8,tune2=1.0,tune3=1)
#
# # Fitting the model
# fit1 <- PTdensity(y=cbind(radiation,ozone),prior=prior,mcmc=mcmc,
# state=state,status=TRUE,na.action=na.omit)
#
# fit1
#
# # Plot the estimated density
# plot(fit1)
#
# # Extracting the density estimate
# x1 <- fit1$x1
# x2 <- fit1$x2
# z <- fit1$dens
# par(mfrow=c(1,1))
# contour(x1,x2,z)
# points(fit1$y)
#
# ## End(Not run)
Run the code above in your browser using DataLab