## Not run:
# # Respiratory Data Example
# data(indon)
# attach(indon)
#
# baseage2 <- baseage**2
# follow <- age-baseage
# follow2 <- follow**2
#
# # Prior information
#
# prior <- list(alpha=1,
# M=4,
# frstlprob=FALSE,
# nu0=4,
# tinv=diag(1,1),
# mub=rep(0,1),
# Sb=diag(1000,1),
# beta0=rep(0,9),
# Sbeta0=diag(10000,9))
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
#
# nburn <- 5000
# nsave <- 5000
# nskip <- 20
# ndisplay <- 100
# mcmc <- list(nburn=nburn,
# nsave=nsave,
# nskip=nskip,
# ndisplay=ndisplay,
# tune1=0.5,tune2=0.5,
# samplef=1)
#
# # Fitting the Logit model
# fit1 <- PTglmm(fixed=infect~gender+height+cosv+sinv+xero+baseage+baseage2+
# follow+follow2,random=~1|id,family=binomial(logit),
# prior=prior,mcmc=mcmc,state=state,status=TRUE)
#
# fit1
#
# plot(PTrandom(fit1,predictive=TRUE))
#
# # Plot model parameters (to see the plots gradually set ask=TRUE)
# plot(fit1,ask=FALSE)
# plot(fit1,ask=FALSE,nfigr=2,nfigc=2)
#
# # Extract random effects
# PTrandom(fit1)
# PTrandom(fit1,centered=TRUE)
#
# # Extract predictive information of random effects
# PTrandom(fit1,predictive=TRUE)
#
# # Predictive marginal and joint distributions
# plot(PTrandom(fit1,predictive=TRUE))
#
# # Fitting the Probit model
# fit2 <- PTglmm(fixed=infect~gender+height+cosv+sinv+xero+baseage+baseage2+
# follow+follow2,random=~1|id,family=binomial(probit),
# prior=prior,mcmc=mcmc,state=state,status=TRUE)
# fit2
#
# # Plot model parameters (to see the plots gradually set ask=TRUE)
# plot(fit2,ask=FALSE)
# plot(fit2,ask=FALSE,nfigr=2,nfigc=2)
#
# # Extract random effects
# PTrandom(fit2)
#
# # Extract predictive information of random effects
# PTrandom(fit2,predictive=TRUE)
#
# # Predictive marginal and joint distributions
# plot(PTrandom(fit2,predictive=TRUE))
# ## End(Not run)
Run the code above in your browser using DataLab