## Not run:
# # School Girls Data Example
# data(schoolgirls)
# attach(schoolgirls)
#
# # Prior information
# prior <- list(a0=5,b0=1,
# M=4,
# typepr=1,
# frstlprob=FALSE,
# tau1=0.01,tau2=0.01,
# nu0=4.01,
# tinv=diag(10,2),
# mub=rep(0,2),
# Sb=diag(1000,2))
#
# # Initial state
# state <- NULL
#
# # MCMC parameters
#
# nburn <- 10000
# nsave <- 10000
# nskip <- 20
# ndisplay <- 1000
# mcmc <- list(nburn=nburn,nsave=nsave,nskip=nskip,ndisplay=ndisplay,
# tune1=1.5,tune2=1.1,samplef=1)
#
# # Fitting the model
#
# fit1 <- PTlmm(fixed=height~1,random=~age|child,prior=prior,mcmc=mcmc,
# state=state,status=TRUE)
# fit1
#
# # Summary with HPD and Credibility intervals
# summary(fit1)
# summary(fit1,hpd=FALSE)
#
# # Plot model parameters (to see the plots gradually set ask=TRUE)
# plot(fit1,ask=FALSE)
# plot(fit1,ask=FALSE,nfigr=2,nfigc=2)
#
# # Plot an specific model parameter (to see the plots gradually set ask=TRUE)
# plot(fit1,ask=FALSE,nfigr=1,nfigc=2,param="sigma-(Intercept)")
#
# # Random effects information
# PTrandom(fit1)
#
# # Predictive marginal and joint distributions
# plot(PTrandom(fit1,predictive=TRUE))
# ## End(Not run)
Run the code above in your browser using DataLab